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ARTICLE INFO ABSTRACT

Keywords: Quantitative analysis on biomedical images has been on increasing demand nowadays and for modern
Biomedical Image Segmentation computer vision approaches. While recently advanced procedures have been enforced, there is still necessity
EfficientNet

in optimizing network architecture and loss functions. Inspired by the pretrained EfficientNet-B4 and the
refinement module in boundary-aware problems, we propose a new two-stage network which is called
EffcientNet-encoder U-Net Joint Residual Refinement Module and we create a novel loss function called
the Tversky—Kahneman Baroni-Urbani-Buser loss function. The loss function is built on the basement of
the Baroni-Urbani-Buser coefficient and the Jaccard-Tanimoto coefficient and reformulated in the Tversky-—
Kahneman probability-weighting function. We have evaluated our algorithm on the four popular datasets: the
2018 Data Science Bowl Cell Nucleus Segmentation dataset, the Brain Tumor LGG Segmentation dataset, the
Skin Lesion ISIC 2018 dataset and the MRI cardiac ACDC dataset. Several comparisons have proved that our
proposed approach is noticeably promising and some of the segmentation results provide new state-of-the-art
results. The code is available at https://github.com/tswizzle141/An-EffcientNet-encoder-U-Net-Joint-Residual-
Refinement-Module-with-TK-BUB-Loss.

Residual Refinement Module
Baroni-Urbani-Buser coefficient
Tversky—Kahneman probability-weighting
function

1. Introduction shape-matching [6], active contours [7], ...Those approaches though

work well on numerous benchmarks but seem to deteriorate in some

Important advances in computer vision algorithms have been
adopted to various fields, including biomedical image analysis. The ap-
plication of convolutional neural networks (CNNs) [1] for several tasks
of detection, classification, segmentation has consequential utilization
in the medical field, where laborious assignments could be replaced
by automatic systems. Deep CNNs have evidenced increasing usage
in biomedical fields, for instance, organ, nuclei, brain tumor and skin
segmentation [2,3]; however, the current CNN-based approaches still
have some shortcomings in accuracy and training time optimization.

Automatic nuclei segmentation of microscopy images is an urgent
task due to the subjectivity of manual segmentation. Experimentally,
nuclei segmentation approaches need to be instance-aware to appro-
priately detach adjoining nuclei, and, those approaches required to
tackle various problems like high cell density, low contrast, intensity
inhomogeneity, weak boundaries, strong gradients inside the nuclei...
Conventionally, nuclei segmentation has been addressed by traditional
computer vision approaches such as thresholding [4], filtering [5],
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problematic instances. Besides, U-Net [8] and Mask R-CNN [9] have
been the preeminent deep-learning architectures applied in nuclei seg-
mentation. These two models have been combined into one architecture
by Vuola et al. [10] in order to integrate the properties of segmentation
and bounding-box prediction for better learning important informa-
tion about the nucleus shapes. Attention mechanism has also been
employed, for example, in [11], so that multi-scale features could be
received from original input and the receptive field can be strengthened
with multi-scale convolutions. Zhang et al. [12] have used the FCN
model to execute coarse nuclei images segmentation; before integrating
with GANs model with splitting branches in the discriminator structure
to improve performance accuracy. Nevertheless, these methods seem to
be cumbrous and they have not consider the importance of boundary
refinement in small cell segmentation.

With regard to brain tumor analysis, recently, deep-learning meth-
ods on automatic brain segmentation have evolved. Improvement of
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networks yielding satisfactory brain LGG segmentation could poten-
tially admit for the tumor genomic identification automatization pro-
cess through MRI that is cost-effective and liberating inter-reader vari-
ability [13]. Dong et al. [14] has put forward non-invasive magnetic
resonance techniques as an identifying tool for brain tumor detection
without the risk associated with ionizing radiation with the use of U-
Net. Brosch and his colleagues [15] have adopted a fully convolutional
network with skip connections for sclerosis lesion segmentation. A
modified U-Net has been introduced by Isensee [16] for brain tumor
segmentation with the use of thorough data augmentation to success-
fully avoid overfitting problem. The Cui et al. [17] model employs of
two distinct FCN models and one of them needs only forward compu-
tation; thus improving in core tumor category. However, accurate and
effective segmentation of tumors remains a problematic task on account
of different occurrences in brain regions and shapes and sizes variety.

In skin disease diagnosis, automated melanoma segmentation is
challenging because of huge variations artifacts like color calibrations,
hole and shrink. To tackle this challenge, Sarker et al. [18] have dis-
played a skin segmentation architecture using negative log-likelihood
and end-point-error loss functions to retain pertinent contours. Li and
his colleagues [19] have built up a dense deconvolutional model uti-
lizing hierarchical supervision for occupying locally and globally con-
textual features for skin segmentation. In addition, if vanilla U-Net has
been popularly employed in biomedical image segmentation, various
advancement of U-Net have been designed for better segmentation
veracity; for instance, an extended form of the U-Net MCGU-Net [20] is
proposed by combining BConvLSTM [21] in the skip connections and
employing Squeeze-and-Excited module in the decoding path before
re-using information with dense convolutions for higher resolution
features. Nazi et al. has combined U-Net with a model of Deep Convolu-
tional Neural Network integrating with Support Vector Machine [22] to
produce a joint classification and segmentation network for skin prob-
lems diagnosis. Similarly, these networks are high on the parameters
number without putting boundary optimization in consideration.

Deep learning-based methods have also been applied for MRI car-
diac segmentation. Wang et al. citecsrnet have proposed regression
component for segmenting the left ventricle more accurately though
the cardiac structures are variable. Zhang et al. have proposed BLU-
Net [23] and Compressed Dense Blocks for fewer connections between
the input and the inner layers. Pure Dilated Residual U-Net (PDR U-
Net) [24] has been also proposed to segment the femur and tibia bones
from X-ray images automatically and correctly. Although these deep
learning-based architectures above have confirmed their performance
efficiency, there are still certain drawbacks that their architectures are
fairly complex. Furthermore, some of them could not leverage the usage
of pretrained models which help the network converge faster. As well,
some architectures have not seriously considered on preserving the
edges of features. Motivated by these weaknesses, we have proposed a
Modified EffcientNet-encoder U-Net Joint Residual Refinement Module
network to progressively encourage biomedical image segmentation
result reliability.

Applying appropriate loss function helps further improving seg-
mentation model competency. The Mean Squared Error (MSE) and
Cross Entropy (CE) loss function have been widespreadly adopted for
extracting features from specific regions. Though practical experiments
indicate that these two loss functions could perform classification and
segmentation task well, there are still valid weaknesses in highly-
unbalanced class training, because of their assumption on identical
importance of distribution of labels. Recently, there has been an rising
enthusiasm in exploiting the active contour models as loss functions
for training the neural networks. For example, in active contour mod-
els, Mumford-Shah functional [25], Active-Contour loss [26], level-set
methods [27], and proximal methods [28] have produced undoubtable
segmentation performances. If Mumford-Shah and Active-Contour loss
function pay attention on edge-preserving filtering method, the Dice
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Loss function [29] effectuates the mathematical representation of seg-
mented object; however because of its non-convexity, there could be
degradation in attaining desirable results. Region-based Tversky [30]
and Focal Tversky loss functions [31] tend to control the information
flow implicitly through pixel-level affinity and solve class-imbalanced
problem. Notwithstanding, their convergence speed is witnessed to be
not good enough.

In terms of binary similarity coefficients, the Baroni-Urbani-Buser
coefficient is famous for limiting the impact of negative matches. It
significantly down-weights the quantity similar to the true-negative
(TN) quantity relative to a in its numerator [32]. The Baroni-Urbani—
Buser coefficient is frequently utilized in the problems of detecting
fingerprints similarity [33], clustering methods in biological system-
atics [34], ... To the best of our knowledge, the Baroni-Urbani-Buser
coefficient has not been investigated in segmentation study. This moti-
vates us to propose a new region-based TK-BUB (Tversky-Kahneman
Baroni-Urbani-Buser) loss function, with the help of the Tversky—
Kahneman probability weighting function [35], so that not only ad-
dress class-imbalanced tissues, but also intensively promote the model
convergence rate.

In this paper, our fundamental contributions are:

» Proposing a novel model called the Modified EffcientNet-encoder
U-Net Joint Residual Refinement Module to improve the overall
biomedical image segmentation performance.

Creating a new loss function called the Tversky—-Kahneman
Baroni-Urbani-Buser (TK-BUB) loss function and some versions
of this loss function, for better network convergence speed.
Experimenting on four datasets for evidencing the effectiveness
of our proposed architecture and loss function over other loss
functions applying in different methods. Due to this respect,
experiments are executed on the four popular datasets: the 2018
Data Science Bowl Cell Nucleus Segmentation dataset, the Brain
Tumor LGG Segmentation dataset and the Skin Lesion ISIC 2018
dataset, without external data usage. The TK-BUB loss function is
proved to express better performances in almost cases.

2. Related work
2.1. EfficientNet

Tan et al. [36] have introduced a novel network scaling approach,
namely EfficientNet, that utilizes a primary but exceedingly efficient
compound coefficient to scale up CNNs in a more structured manner.
If traditional methods that whimsically scale model dimensions (width,
depth and resolution), the novel algorithm consistently scales each ele-
ment with a certain set of scaling coefficients. Denote three dimensions
of an input is d,w,r as d standing for the depth; w standing for the
width and r standing for the resolution. In [36], the Compound Scaling
method could be presented as follows:

d=a® w=p" r=y? axPxy*=2 apfy>1 (€8]

with a, §,y are constants that represent how much to scale the indi-
vidual dimensions by, and ¢ is a variable that represents how much
additional computational resources.

In terms of FLOPs, the cost of convolution scales linearly with
d, but quadratically with w and r, that is if the depth is doubled,
the computation cost is doubled too, however when the width or
resolution is doubled, the computation cost is quadrupled. Putting the
math together, this means that scaling a convolutional network with
the parameter ¢ results in a new network that has a computational cost
of approximately 2%. In the original paper [36], the specific values the
authors get from running experiments on the EfficientNet architecture
are « = 1.2, = 1.1,y = 1.15. This compound scaling approach is
reported to uniformly increment the network accuracy for scaling up
some networks, for instance, MobileNet (+1.4% ImageNet accuracy),
and ResNet (+0.7% ImageNet accuracy), in comparison with traditional
scaling approaches.
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2.2. Normalization methods

Normalization has always been a demanding concern in the deep-
learning area, as normalization techniques could undeniably decrease
training time. These techniques help normalize features in order to pre-
serve the feature contribution, which leads our model to be unbiased.
As well, normalization reduces Internal Covariate Shift, which adjusts
in the contribution of model activations because of the alternation in
model parameters during training process. Batch Normalization [37]
allows smoother loss surface due to the fact that it tightly encircles the
gradients magnitude. It further incites the model with better optimiza-
tion on account of the fact that weights are not allowed to explode
and restricted to a valid range. Weight Normalization [38] splits the
weight vector from its direction, which provides an identical impact
as in batch normalization with variance. As for the mean, mean-only
batch normalization and weight normalization are combined for gain-
ing pertinent outcomes even in small mini-batches; which means they
subtract out the mean of the mini-batch but do not divide by the vari-
ance. Different from Batch Normalization, Layer Normalization [39]
normalizes input across the features. Instance Normalization [40] and
Layer Normalization are the same to some extent, but the variation
is that Instance Normalization normalizes across each channel in each
training instance, contrasting to Layer Normalization, which normalizes
across input features in an training instance. Different from Batch
Normalization, the Instance Normalization layer is employed during
the testing process, by reason of non-dependency of the mini-batch.
This algorithm is initially conceived for style transfer, as Instance
Normalization tries to overcome the hurdle of agnostic model to the
original image contrast. Group Normalization [41] normalizes over
channels group for each training instances; thus Group Normalization
is to some extent in between Instance Normalization and Layer Normal-
ization. Batch-Instance Normalization is an interpolation between Batch
Normalization and Instance Normalization, as Instance Normalization
might completely erase style information despite of its own merits,
it could be noticeably problematic in the conditions where contrast
matters.

2.3. Refinement module

Lin et al. [42] has tackle the deficiency of feature maps downscaling
and expensive computation cost of ResNet and Atrous Convolution by
proposing a refinement network. It contains a residual block which is
used but with batch normalization removed; multi-resolution fusion
for merging the feature maps using element-wise summation; and a
Chained Residual Pooling module fusing output feature map together
with the input feature map through summation of residual connections;
in order to capture background context of an image. To produce
truly photorealistic results, the Cascaded Refinement Network [43] has
synthesized images by progressive refinement, and going up an octave
in resolution amounts to adding single refinement modules. There are
three feature layers in each module M;: the input layer, an interme-
diate layer, and the output layer. The downsampled semantic layout
c-channel L and a bilinearly upsampled feature layer d,_,-channel
F,_; concatenate into the input layer. The interactive refinement ar-
chitecture in [44] contradicts to others that four extreme points are
extricated for each training samples to train the segmentation model
to counter the weakness of not providing the challenging segmented
area and requiring more interactive to complete segmentation task like
traditional interactive methods.

2.4. Jaccard/Tanimoto coefficient

Jaccard/Tanimoto coefficient, which is the ratio of the intersection
of two objects to their union, is one of the most primary and ubiquitous
similarity measurement to compare biological presence-absence data.
Due to its generality, the Jaccard/Tanimoto Coefficient is exploited to
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a variety of applications in binary data, for example, from genomics,
biochemistry, and other areas of science [33]. Given two vectors y;
and y; displaying two distinct objects, we have T(y,,y;) = i‘gif where
T(y;,y;) is the Jaccard/Tanimoto similarity coefficient. Ne;/e{'theless,
this coefficient sometimes lacks probabilistic interpretations or statisti-
cal error controls; so as to deal with this dispute, Chung et al. [33] have
divided the coefficient calculation process into two cases: If y; and y;

; DiXp
are independent, T(y;,y;) = ———
p s TGy = re—

with p;, p; are the corresponding

occurrence (e.x. success or gain) probabilities, pi»p; € [0,1]; else
T(y,y)) = 20
e yivy;

3. Methodology
3.1. The proposed model

As U-Net [8] has been vastly employed on segmenting biomedical
images, we design our model based on U-Net backbone to come in
for its advantages. We pretrain the encoder with EfficientNet [36];
because it has caused waves in the deep-learning field with a new
scaling method called Compound Scaling. If we scale the dimensions by
a certain amount consistently at the same time, we can produce model
with better outcome with EfficientNet pre-trained model.

In this study, we propose a network encoder with EfficientNet-B4,
based on its high-accuracy when being experimented on ImageNet. The
EfficientNet-B4 initial architecture is indicated in Fig. 1. As can be
seen from Fig. 1a, there are totally 7 MBConv block modules, each
module comprises of different number of MBConv blocks and each
MBConv block contains 4 phases: the Expansion phase, the Depthwise
Convolution phase, the Squeeze-and-Excitation phase and the Output
phase. Between the Depthwise Convolution phase and the Squeeze-and-
Excitation phase is the BatchNorm layer, as illustrated in Fig. 1b. To
further connect some of the pre-trained EfficientNet-B4 layers to the
decoder through the skip connections, four layers of the pre-trained
EfficientNet-B4 encoder are selected, so as to accurately fit the size in
the decoder corresponding layer. We have chosen the 342nd, 154th,
94th and 30th layers to attach to the skip connection. To be more
detailed, the 342nd layer is the BatchNorm layer of the first MBConv
block in the 6th MBConv block module (block6a_bn); the 154th layer
is the BatchNorm layer of the first MBConv block in the 4th MBConv
block module (block4a_bn); the 94th layer is the BatchNorm layer of the
first MBConv block in the 3rd MBConv block module (block3a_bn) and
finally, the 30th layer is the BatchNorm layer of the first MBConv block
in the 2nd MBConv block module (block2a_bn). These skip connections
between pretrained encoder and decoder help preserve the spatial
information in the encoder features. Although there are several ways
to choose the origin of the skip-connections in the pretrained encoder,
and our choice of layers is a new choice, we have considered choosing
specific layers from the EfficientNetB4 for some reasons. Firstly, we
focus on matching the height and width resolution of the feature maps
in the encoder layer and the corresponding layer in the decoder to
perform concatenating operations. Secondly, we notify the channel
value that after deconvolutional operations, the difference between the
input channel and the output channel is not so large, because in that
case the convolutional operation might cause features loss. Lastly, when
we selected specific layers, we focused on picking from the 7 MBConv
blocks of the pretrained EfficientNetB4, to come in for the most salient
features from the encoder.

In the second stage, feature maps are fed into a modified Resid-
ual Refinement Module as inspired from Qin et al. [45], as we are
the first to combine boundary refinement enhancement module for
segmentation method. Notably, our new point is modifying Batch Nor-
malization layers to Mean-Variance Normalization (MVN) [46], as long
as Batch Normalization could calculate windowed statistics and switch
between accumulating or using fixed statistics, MVN simply centers and
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Fig. 1. Original Architecture of the EfficientNetB4. (a) the overall architecture of the EfficientNet B4; (b) the detail of each MBConv block; (c) indicates the designation of each

phase in a MBConv block [36].

standardizes a single batch at a time. Additionally, Batch Normaliza-
tion operations cost parameters, which results in network parameter
increase; while MVN operations do not cost parameters. This normal-
ization technique is also applied in the decoder for uniformity. We all
maintain the core Residual Refinement Module (RRM) from [45], as
the predicted coarse saliency maps S.,,., is adjusted by studying the
residuals S,,;4,, between the saliency maps and the ground truth:

Sre/'ined = Scoarse + Sresia’ual (2)

To refine regional and boundary deficiency in coarse maps, this RRM
exploits the residual encoder—decoder architecture, consisting of an
input layer, an encoder, a bridge, a decoder and an output layer. Each
contains 64 3 x 3 filters, followed by a MVN layer and a ReLU non-
linearity. Non-overlapping MaxPooling2D manipulates downsampling
in the encoder and bilinear interpolation manipulates upsampling in the
decoder. The output of this RRM is the final resulting saliency map of
our model; before going through a Sigmoid or Softmax activation layer
(depend on the segmentation dataset) to obtain predicted segmented
output. Our proposed network is demonstrated as Fig. 2 as follows.

3.2. The proposed loss function

3.2.1. The Baroni-Urbani-Buser (BUB) loss function

Firstly, we have an introduction on the Baroni-Urbani-Buser coef-
ficient before going deeper into our proposed loss functions. Starting
from the Jaccard/Tanimoto Coefficient described in Section 2.4, simi-
larity measures are determined from the contingency table, containing
four events: (a) 1-1 (interaction existing in both cases), (b) 1-0 (inter-
action existing in the first case and missing in the second case), (c¢) 0-1

(interaction missing in the first case but existing in the second), and (d)
0-0 (interaction missing both cases) [47]. With those parameters, a lot
of similarity measures have been determined, for example:

Vaxd+a

The Baroni-Urbani-Buser Coefficient: BUB= ——— —  (3)
Vaxd+a+b+c
Similarly the Jaccard/Tanimoto coefficient could be written as:
JT=—2— )
a+b+c

From the expression of the BUB and the JT coefficients, it is obvious
that the Jaccard/Tanimoto coefficient considers only double presences
(a), whereas the Baroni-Urbani-Buser coefficient incorporates dou-
ble absences (d). If the Jaccard/Tanimoto Coefficient is displayed in
confusion matrix elements, it would be re-written as:
B TP

T TP+FP+FN

with T P standing for true positive rate; F P standing for false positive
rate and F N standing for false negative rate. Thus, it is understandable
that (a) = TP;(b) = FP;(c) = FN and further, (d) would be TN
with TN is the true negative rate. Therefore, the Baroni-Urbani-Buser
coefficient could be demonstrated in another way as follows:

TP++\TPXTN
TP+ FP+FN++\TPXTN

To the best of our knowledge, we are the first ones applying the Baroni—
Urbani-Buser coefficient for segmentation problems; and we will per-
form two different versions of Baroni-Urbani-Buser loss functions to
target the class-imbalanced issue. The new loss function for biomedical

JT 5)

BUB = (6)
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Fig. 2. Our Proposed two-stage Model. For generalization, we denote the resolution as H x W. Here the ‘...” icon in the part of pretrained EfficientNet-B4 encoder denotes the
layers between 2 layers appearing on the Figure. The variable ‘C’ in the Residual Refinement Module displays the filters number in a layer, and here C = 64; while c stands for

the input channel, which is 1 or 3 depending on the dataset used.

image segmentation we create is the BUB (Baroni—Urbani-Buser) loss
function (version 1), which could be presented as:

FP+ FN

TP+ FP+FN++\TPXTN

We could also replace TP by /TP xTN and keep the TN quantity,
thus gaining the second version of the BUB loss function:

FP+ FN

TN+ FP+FN++\TPXTN

It could be easily seen that 0 < /,/, < 1. Practices show us that the
value of TN always exceeds the value of TP by certain times; then,
if we replace TP by v/TPXTN in [, it means we try to increase
the quantity T P, which makes the denominator value decreases then
I, increases. On the other hand, if we replace TN by TP XTN in
I,, it means we try to decrease the quantity TN, which makes the
denominator value increases then /, decreases.

I,=1-BUB= @

by ®

3.2.2. Formulation with the Tversky—Kahneman function

We propose to have some modifications in order to increase the
model convergence speed; therefore we propose to import our BUB
loss function into the Tversky—-Kahneman probability weighting func-
tion [35] for enhanced convergence speed. This probability weighting
function is established as:

xV

9

w(x) = ;
[/ + (1 = x)]7

where x € [0, 1] is the cumulative probability distribution of gains or
losses in economical fields. To generate the TK-BUB loss function, we
have:
i

(10$)

Lyk-pyg-v1 = ——————
U+ =15y

17
2 an

Lrk_pup-wn2 = T
[l;’ + =L

Above we have proposed two versions of the TK-BUB loss function.
As regard to the parameter y, experiments have been conducted with
high values of y till it indicates that the overall result displays the best
when y € (1,2) and in addition, the best performance is confirmed
with y = %. Thus we train all experiments in case of y = %. Carefully
taking a look into both versions of the TK-BUB loss function, if the
nominator value is powered by base y = % > 1, the denominator value
is powered by base ~ y x % =1, as a result, the nominator value tends

to converge faster than the denominator value. As can be seen that
I} > I,, it follows that L;x_pyp_,» has a better convergence speed
than Lyg_pyp-,1- As a consequence, we choose Lpyg_pyp_.n for our
end-to-end training process. Tables in later sections will prove that our
proposed Lrx_pyp_.» gaining the best convergence speed as well as
the most accurate segmentation results.
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3.3. Evaluation metrics

In biomedical image analysis, while the Dice Similarity Coefficient
(DSC) statistically measures the similarity between segmentation maps,
the Intersection over Union index (IoU) statistically gauges the sim-
ilarity and diversity of sample pixel sets. They are determined by:

DsC= — 2xXTP 12)
2XxTP+FP+FN

_ TP
" TP+ FP+FN

with TP, TN, FP, F N have been determined as in the previous section.

IoU 13)

In the simplest terms, the precision is the ratio between the true
positives out of the total positives; while the recall is the measure of
the model accurately identifying true positives. Mathematically:

TP

Precision = ——— 14)
TP+ FP
TP
l= —— 1
Reca TP FN (15)

F-score (also F)) is a measure that is the harmonic mean of precision
and recall:

2.Precision x Recall
F-score = — ——— 16
Precision + Recall a6

Hausdorff Distance (HD) [48] is one of the most informative and
useful validation criteria. For two point sets X and Y, the Hausdorff
Distances from X to Y and from Y to X are calculated as (17) and
(18):

HD(X,Y) = in||x — 1
(X,Y) gﬂyuym a7)

and

HDY,X)= in|ly — 1
(Y, X) %wgwxm (18)

4. Experiment

4.1. Datasets

4.1.1. The 2018 data science Bowl Cell Nuclei segmentation dataset

Cell nuclei identification is the original point for lots of analyses by
reason of almost human body cells comprise of a nucleus full of DNA,
the genetic code programming a body cell. Cell nuclei identification
let researchers figure out each individual cell in an instance, and
by assessing cell reaction to different medical operations, the expert
could understand the elemental biological processes. Several cell nuclei
algorithms allow apprehending structural and functional features of
biological model systems. As cell nuclei makes development to seize
such systems in greater detail and as the advancement of novel assays
declares more compound characteristics of living organisms, the neces-
sity for robust as well as easy to occupy microscopy image analysis
approaches have become crucial to answer a much broader collection
of biological questions. The Data Science Bowl 2018 [49] has held a
competition on proposing an effective solution for automatic nuclei seg-
mentation and detection. There are 670 nuclear images and respective
pixel-level segmentation masks in the 2018 Data Science Bowl dataset,
in our experiment, 80% samples for training and the remainder 20%
samples for testing have been randomly chosen, resizing images to
256 X 256.
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4.1.2. The Brain Tumor LGG Segmentation dataset

Lower-grade gliomas (LGG) consists of WHO grade II and grade
III brain tumors. While grade I are always curable by surgical resec-
tion, grade II and III are infiltrative and tend to recur and evolve
to higher-grade lesion. This LGG dataset [13] consists of brain MR
images together with manual FLAIR abnormality segmentation masks.
Images were taken from The Cancer Imaging Archive (TCIA); and
they correspond to 110 patients with totally 3929 images contained
in The Cancer Genome Atlas (TCGA) lower-grade glioma collection
with at least fluid-attenuated inversion recovery (FLAIR) sequence and
genomic cluster data available. In order to judge our proposed approach
on this dataset, we split this into 80:20 that 80% of the total utilized
for training and the remainder utilized for testing, resizing images to
256 X 256.

4.1.3. The Skin Lesion ISIC 2018 dataset

The next dataset we use for evaluational purpose is the Lesion
Boundary Segmentation dataset from the ISIC 2018 competition [50,
51], comprising 2594 dermoscopy pictures of skin lesions with expert
annotations from diverse anatomic locations and institutions. Each im-
age is resized to the shape of 256 x 256 to balance between complexity
and training time, with 80% of the dataset adopted for training and
20% left adopted for testing respectively, due to the lack of the official
testing dataset.

4.1.4. The MRI cardiac ACDC dataset

The ACDC dataset [52] is collected from 100 patient 4D cine-CMR
scans, each comprising of segmentation labels for the left ventricle (LV),
the myocardium (Myo) and the right ventricle (RV) at the end-systolic
(ES) and end-diastolic (ED) phases of each patient. The training set,
valid set and testing set are splited with ratio 70:10:20. All images have
been resized to 128 x 128.

4.2. Implementation details

We have performed the proposed network, Modified EffcientNet-
encoder U-Net Joint Residual Refinement Module, with our proposed
customized Baroni-Urbani-Buser loss layer to segment multiple
biomedical images. Our model is trained with cost minimization on
several epochs (base on different cases), performed by using NADAM
optimizer [53] with an original learning rate of 0.001. Learning rate is
divided by half every 7 epochs, before reaching 0.00001 and being con-
stantly kept through the remainder training period with 120 epochs for
all the four datasets. The training time for our model is approximately
40 min to an hour at maximum on a workstation with NVIDIA Tesla
P100 16 GB GPU.

4.3. Experimental results

Our proposed algorithm is compared with several algorithms to
evaluate the competency of our new approach and write down the
mean value of each metric index into several ablation test results tables.
Method results with “*” are re-implemented by the released source
codes; results elements with “~” denote the corresponding ones are
not provided publicly. Models with code are trained with conditions
in the Implementation Details and with the Ly x_pyp_,» loss function;
while methods without public code have results extracted from cited
papers. In each metric index column, the best and the second best
values are emphasized in bold and italic correspondingly. The column
named “Params” denotes the number of parameters in each method.



D.-H.-N. Nham et al.

Image FCN Eff-UNet

Double
U-Net al.

Biomedical Signal Processing and Control 83 (2023) 104631

Ground
-truth

Trinh et. Ours

o b P b
o ok K I ok K

4
&
_F el
- - ._ .

HREERERER
_Je Jo le]e Jo |o

Fig. 3. Qualitative results on top-5 the best segmentation performances on the 2018 Data Science Bowl Cell Nucleus Segmentation dataset. Important regions are marked with
appropriate boxes to easier visualize the difference between predictive results and ground truths.

4.3.1. Evaluation on the 2018 Data Science Bowl Cell Nucleus Segmenta-
tion dataset

To evaluate the persuasiveness of our proposed Modified
EffcientNet-encoder U-Net Joint Residual Refinement Module, firstly
experiments are conducted on the 2018 Data Science Bowl Cell Nucleus
Segmentation dataset. The respective quantitative outcomes are shown
in Fig. 3 and the comparison outcomes between various methods are
indicated in Table 1. From Table 1, several remarks can be considered:
firstly, those approaches having the integration of attention or gate
mechanisms and residual module, such as FANet [54], MFRS-Net [55],
Xie et al. [56], are obviously superior on segmenting the 2018 Data
Science Bowl Cell Nucleus Segmentation dataset with the mean DSCs
are all over 0.9. Secondly, two-stage models like Double U-Net [57] and
ours have the dominant capability in solving nuclei segmentation task.
Trinh et al. [58] also has promising performance on this dataset (0.9152
DSC, 0.8446 IoU); however, our proposed approach with utilization
of pretrained EfficientNet B4 carries out the best scores on almost all
evaluation metrics (0.9257 DSC, 0.8619 IoU and 0.9408 Recall) and
shows a more precise outcome than the existing baselines, as shown
in Fig. 3. Therefore, these comparative outcomes have demonstrated
the efficacy of the proposed Modified EffcientNet-encoder U-Net Joint
Residual Refinement Module for automated nuclei segmentation.

4.3.2. Evaluation on the Brain Tumor LGG Segmentation dataset
Additionally, we evaluate our proposed Modified EffcientNet-
encoder U-Net Joint Residual Refinement Module to experiment on
brain tumor segmentation. The respective quantitative results are il-
lustrated in Fig. 4 and the comparison results of evaluation metrics are

displayed in Table 2. New observations could be obtained as it could
be confirmable that the scores of the evaluation metrics belonging to
our proposed method far surpasses the scores outcoming from other
methods (0.9251 DSC, 0.8458 IoU). Particularly, the performance of
our proposed method distinctly outperforms the previous baselines,
notably with the improvement of 1.51% in terms of the DSC from the
second highest value of Eff-UNet [63]. This improvement demonstrates
that the proposed method immensely comes in for the pretrained
model properties as well as the encoder-decoder architecture and skip
connections of U-Net, which enforces studying the globally context and
peculiar features to discriminate the tumor area from the neighboring
structures.

4.3.3. Evaluation on the ISIC 2018 dataset

To present an another evaluation of our proposed Modified
EffcientNet-encoder U-Net Joint Residual Refinement Module and the
proposed Tversky—-Kahneman Baroni-Urbani-Buser loss function, ad-
ditional experiments have been operated to compare our approach
with some others on the ISIC 2018 dataset. The respective quantitative
results are illustrated in Fig. 5 and ablation testing results are recorded
in Table 3. As Table 3 demonstrates, it is observable that our model,
trained with Lyg_pyp_,» could still gain much effective and accurate
segmentation results (approximately 0.89 in DSC).

4.3.4. Evaluation on the MRI cardiac ACDC dataset
Lastly, our proposed Modified EffcientNet-encoder U-Net Joint
Residual Refinement Module is validated with several state-of-the-arts.
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Table 1
Comparison between different methods on the 2018 Data Science Bowl Cell Nucleus Segmentation dataset.

Methods Params DSC IoU Precision Recall F-score
Double U-Net* [57] 29.3M 0.9133 0.8407 0.9596 0.6407 0.7684
U-Net++* [11] 10.2M 0.8970 0.8440 0.9480 0.8840 0.9110
FANet [54] - 0.9176 0.8569 0.9194 0.9222 0.9208
TransUNet [59] 66.9M 0.9210 0.8560 - -

MFRS-Net [55] - 0.9224 0.8534 0.9022 0.9402 0.9208
SSFormer-L [60] - 0.9230 0.8614 - -

Ahmed et al. [61] - 0.8632 0.7715 0.8843 0.8719 0.8632
Xie et al. [56] - 0.9046 - - -

Attention U-Net* [62] 31.9M 0.8750 0.7782 0.9384 0.8927 0.9150
FCN* [46] 10.9M 0.8939 0.8087 0.9118 0.9201 0.9159
Eff-UNet (B2)* [63] 21.3M 0.9096 0.8345 0.9304 0.9256 0.9280
ResU-Net* [64] 17.6M 0.8931 0.8053 0.9278 0.9257 0.9267
PraNet* [65] 30.3M 0.8334 0.7149 0.8978 0.8719 0.8847
Swin U-Net* [66] 2.9M 0.8441 0.7306 0.8550 0.9280 0.8900
Trinh et al.* [58] 32.4M 0.9152 0.8446 0.9283 0.9087 0.9184
Our proposed method* 10.3M 0.9257 0.8619 0.9014 0.9408 0.9207

Image Modified Eff-UNet  Efficient+ SE +Swish Ours Ground
U-Net (B2) Residual U-Net -truth

.

]

Fig. 4. Qualitative results on top-5 best segmentation performances on the Brain Tumor LGG Segmentation dataset. Important regions are marked with appropriate boxes to easier

visualize the difference between predictive results and ground truths.

Qualitative visualizations are displayed in Fig. 6 and segmentation
results are observed in Table 4. It could be easily seen that our
proposed approach has obtained on par DSC results compared with
other state-of-the-arts; except for the LV dice score in comparison with
Swin-UNet [66] and TransUNet [59]. Though having noticeably low
number of parameters, our DSC scores have still outpaced the second
best ones by 0.45% to 0.67%. Furthermore, we have also compared the
Hausdorff Distance (HD) between all approaches. It is observable that
our HDs on several parts are reasonably low in comparison with other
state-of-the-arts; which confirms that our propose approach is robust
to noise. The qualitative visualization, which is demonstrated in Fig. 6,
has confirmed our effectiveness of our proposed approach.

4.4. Ablation study

In Table 5, performance metrics for different loss functions used
in training our proposed model are compared in all the four datasets.
The column named “Peaking” denotes the column range for the DSC to
reach its peak in each method. In the 2018 Data Science Bowl Cell Nu-
cleus Segmentation dataset, as expected, in Table 5a, it is observed that
Ly k_pu p-v2 Produces the top scores on DSC (0.9257), IoU (0.8619) and
Recall (0.9408). It is noticeable that when our network is trained with
the Focal-Tversky loss function, though this focal loss function is proved
with good convergence speed, results generated are more modest than
other loss functions whose convergence speeds are mediocre. Table 5b
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Table 2

Comparison between different methods on the Brain Tumor LGG Segmentation dataset.
Methods Params DSC ToU Precision Recall F-score
Buda et al. [67] - 0.82 - - -
Pattabiraman et al. [68] - 0.87 - - -
Attention U-Net* [62] 31.9M 0.8988 0.8173 0.8940 0.8930 0.8935
FCN* [46] 10.9M 0.8782 0.7850 0.8780 0.8855 0.8817
Eff-UNet (B2)* [63] 21.3M 0.9100 0.8310 0.8753 0.8980 0.8865
ResU-Net* [64] 17.6M 0.8963 0.8127 0.9150 0.8329 0.8720
PraNet* [65] 30.3M 0.8878 0.7989 0.9204 0.8263 0.8708
Our proposed method
w/0 RRM* 9.9M 0.9151 0.8458 0.8173 0.9057 0.8592
Our proposed method
with RRM* 10.3M 0.9127 0.8411 0.8555 0.8855 0.8702
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Fig. 5. Qualitative results on some segmentation performances on the ISIC 2018 dataset. Important regions are marked with appropriate boxes to easier visualize the difference

between predictive results and ground truths.

further validates the reliability of our proposed L;g_pyp_,o @s it ex-
ceeds other loss functions on both DSC and IoU indices on the Brain
Tumor LGG Segmentation dataset. Table 5c illustrates the superiority
of our TK-BUB loss function in the ISIC 2018 dataset despite the fact
that the respective scores of all the evaluation metrics are relatively
close, that our Lyx_pyp_,» highest DSC just defeats the second highest
of the one from Accuracy loss function by about 0.15%. In Table 5d,

though the DSC results in all columns are not deviant from each other;
however, the HD information has proved that our proposed loss helps
our proposed overall approach much robust to noise.

To assess the influence of some special components in our proposed
approach, we manipulate further comprehensive ablation experiments
by removing the elements successively before the experimental out-
comes are displayed in Table 6. To be more detailed, “BN” denotes
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Table 3

Comparison between different methods on the ISIC 2018 dataset.
Methods Params DSC IoU Precision Recall F-score
FANet [54] - - 0.8023 0.9235 0.8650 0.8731
Double-UNet [57] - - 0.8212 0.9459 0.8780 0.8962
Swin-UNet [69] - 0.8846 0.7962 0.9085 -
Attention U-Net* [62] 31.9M 0.8593 0.7602 0.9071 0.8458 0.8754
FCN* [46] 10.9M 0.8690 0.7743 0.8992 0.8729 0.8859
ResU-Net* [64] 17.6M 0.8640 0.7673 0.8907 0.8762 0.8834
PraNet* [65] 30.3M 0.8734 0.7818 0.9313 0.8477 0.8875
Our proposed method* 10.3M 0.8893 0.8046 0.9280 0.8756 0.9010

Table 4
Comparison between different methods on the ACDC dataset. Note that the up arrow symbol after the DSC metric means that the higher the DSC the better; while the down arrow
symbol after the HD implies that the lower HD is, the better the segmentation result is.

Methods Params RV Myo Lv Average
DSCt HD| DsCt HD| DSCt HD| DSCt HD|

UNet++* [11] 10.2M 0.3681 12.8581 0.8720 10.2186 0.9300 9.8913 0.7234 10.9893
VIT-CUP [70] - 0.8146 - 0.7071 - 0.9218 - 0.8145 -
FCN* [46] 10.9M 0.8055 27.4510 0.8147 48.5603 0.8872 49.4026 0.8358 41.8046
R50-VIT-CUP [70] - 0.8607 - 0.8188 - 0.9475 - 0.8757 -
Trinh et al.* [58] 32.4M 0.8500 12.8181 0.8678 10.7519 0.9369 9.3127 0.8849 10.9609
UNETR [71] 92.58M 0.8529 - 0.8652 - 0.9402 - 0.8861 -
ResU-Net* [64] 17.6M 0.8788 14.3444 0.8557 10.8518 0.9239 9.0380 0.8861 11.4114
Eff-UNet (B2)* [63] 21.3M 0.8585 14.6111 0.8680 11.8785 0.9320 10.0479 0.8862 12.1792
Attention U-Net* [62] 31.9M 0.8626 12.6425 0.8689 15.2662 0.9321 9.0392 0.8879 12.3160
TransUNet [59] 66.9M 0.8886 - 0.8454 - 0.9573 - 0.8971 -
Swin-Unet [66] 41.5M 0.8855 - 0.8562 - 0.9583 - 0.9000 -
Our proposed method* 10.3M 0.8953 11.9263 0.8767 8.2304 0.9415 8.1508 0.9045 9.4358

Image Unet ++4 Trinh et al. ResU-Net Eff-Unet (B2) Attention U-Net Ground Truth

Fig. 6. Qualitative results on some segmentation performances on the ACDC dataset. Important regions are marked with appropriate boxes to easier visualize the difference between
predictive results and ground truths.

the appearance of Batch Normalization layer, while “MVN” denotes the Table 6 has indicated the importance of MVN layers to the over-
Mean-Variance Normalization layer. “RRM” stands for the Residual Re- all model, as without them segmentation performances could be se-
finement Module. “Ours” stands for our proposed method but without riously deteriorated. Moreover, when RRM is removed, the overall
the Normalization layers and the Residual Refinement Module. model would suffer performance degradation, except for the case on

10
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Table 5
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Comparison between different loss functions on: (a) - The 2018 Data Science Bowl Cell Nucleus Segmentation dataset (b) - The Brain Tumor LGG Segmentation dataset (c¢) - The
ISIC 2018 dataset (d) - The ACDC dataset. Note that in (d), the up arrow symbol after the DSC metric means that the higher the DSC the better; while the down arrow symbol

after the HD implies that the lower HD is, the better the segmentation result is.

(a) - The 2018 Data Science Bowl Cell Nucleus Segmentation dataset

Loss functions Peaking DSC ToU Precision Recall F-score
Lyversky 45-55 0.9198 0.8519 0.8938 0.9504 0.9212
Lyocal — Tversky 37-42 0.9154 0.8446 0.8886 0.9476 0.9172
Lpice 50-60 0.9237 0.8585 0.9209 0.9290 0.9249
LyzCE 55-63 0.9018 0.8215 0.9225 0.9225 0.9225
L ccuracy 42-50 0.9227 0.8570 0.9220 0.9280 0.9250
LK —-BUB -2 28-32 0.9257 0.8619 0.9014 0.9408 0.9207
(b) - The Brain Tumor LGG Segmentation dataset
Loss functions Peaking DSC ToU Precision Recall F-score
Lyversky 48-55 0.9065 0.8302 0.8894 0.8701 0.8796
Lpocal —Tversky 40-48 0.9142 0.8430 0.8416 0.9103 0.8746
Lpice 45-50 0.9117 0.8383 0.8475 0.9026 0.8742
LyzCE 45-52 0.8947 0.8102 0.9140 0.8476 0.8795
L ccuracy 55-62 0.9130 0.8418 0.8474 0.9005 0.8702
LK - BUB -2 35-40 0.9151 0.8458 0.8173 0.9057 0.8592
(c) - The ISIC 2018 dataset
Loss functions Peaking DSC ToU Precision Recall F-score
Lyversky 40-50 0.8806 0.7905 0.8907 0.8997 0.8952
Lpocal — Tversky 35-42 0.8835 0.7983 0.8921 0.9085 0.9002
Lpice 40-48 0.8853 0.8002 0.8915 0.9125 0.9019
LyzCE 40-50 0.8607 0.7612 0.9222 0.8851 0.9033
L ccuracy 38-46 0.8878 0.8031 0.9303 0.8630 0.8954
LK - BUB -2 25-35 0.8893 0.8046 0.9280 0.8756 0.9010
(d) - The ACDC dataset
Loss functions RV Myo LV Average
DSCt HD| DSCt HD| DSCt HD| DSC? HD|
Lyversky 0.8868 13.7708 0.8668 17.8619 0.9364 8.8539 0.8967 13.4955
Lyocal — Tversky 0.8879 15.7588 0.8665 11.0391 0.9358 7.9912 0.8967 11.5964
Lpice 0.8845 12.7856 0.8690 10.2654 0.9411 7.0782 0.8982 10.0431
LoE 0.8759 10.1739 0.8745 16.5614 0.9321 6.4137 0.8942 11.0497
L ,ccuracy 0.8738 16.4022 0.8608 10.2695 0.9336 7.7862 0.8894 11.4860
L;K—-BUB-2 0.8953 11.9263 0.8767 8.2304 0.9415 8.1508 0.9045 9.4358

Table 6

Comparison of mean DSC and mean IoU for Ablation Studies of all the four datasets with different experimental approaches.

Ours+MVN (9.9M)

Ours+BN+RRM (11.7M) Ours+MVN+RRM (10.3M)

Datasets Ours+BN (11.3M)
. DSC 0.9124 0.9253
Cell Nuclel 1y 0.8390 0.8610
Brain DsC 0.9095 0.9151
10U 0.8340 0.8458
Skin DsC 0.8832 0.8871
10U 0.7981 0.8001
RV 0.8583 0.8797
DSC Myo 0.8673 0.8675
LV 0.9292 0.9323
ACDC Average 0.8849 0.8932
RV 0.7811 0.8025
10U Myo 0.7732 0.7734
LV 0.8793 0.8824
Average 0.8112 0.8194

0.9130 0.9257
0.8402 0.8619
0.9081 0.9127
0.8325 0.8411

0.8877 0.8893
0.8002 0.8046
0.8804 0.8953
0.8695 0.8767
0.9315 0.9415
0.8938 0.9045
0.8032 0.8181
0.7754 0.7826
0.8816 0.8916
0.8201 0.8308

the Brain Tumor LGG Segmentation dataset, where the DSC without
RRM is reported to be better than the mean DSC and the mean IoU
with RRM (0.9151 compared with 0.9127 and 0.8458 compared with
0.8411). Obviously, all the elements could complement and support
each other, which additionally confirms the integrated impacts on
general segmentation outcome.

To better understand the efficiency of our Lygx_pyp_,0, DEXt we
analyze the impact of our proposed TK-BUB loss function (version 2)
by comparing its performances with other proposed versions trained
on the best model. The comparison values in mean DSC and mean IoU
evaluation metrics is written down in the Table 7. We confidently see
that our Lyx_pyp_,» coming on top of the leaderboard, that without
this loss function version, the segmentation performances would be

unfavorably affected, as our best performances indisputably exceed the
second best performances by around 0.08% to 0.17% in term of the
mean DSC.

5. Discussion

In an optimization algorithm, the function used for evaluating a
candidate solution is defined as the objective function. Our necessity
is maximizing or minimizing the objective function. In the context
of deep learning problems, a loss function needs to be seeked as the
objective function to minimize the error between the predicted masks
and labels. In the current study, we propose a novel loss function for
training the neural network. This stems from the fact that common

11



D.-H.-N. Nham et al.

Biomedical Signal Processing and Control 83 (2023) 104631

Table 7
Comparison of mean DSC and mean IoU for Ablation Studies with different experimental loss functions.
Datasets l I Lrk-pup-u Lrk_pup-n2
Cell Nuclei DSC 0.9220 0.9230 0.9240 0.9257
10U 0.8560 0.8574 0.8608 0.8619
DSC with RRM 0.9106 0.9113 0.9126 0.9127
Brain w/0 RRM 0.9139 0.9143 0.9140 0.9151
10U with RRM 0.8400 0.8401 0.8413 0.8411
w/0 RRM 0.8436 0.8434 0.8440 0.8458
Skin DSC 0.8880 0.8883 0.8870 0.8893
10U 0.8041 0.8050 0.8020 0.8046
RV 0.8747 0.8797 0.8755 0.8953
DSC Myo 0.8749 0.8752 0.8809 0.8767
LV 0.9400 0.9390 0.9394 0.9415
ACDC Average 0.8944 0.8964 0.8986 0.9045
RV 0.7940 0.7942 0.7948 0.8181
10U Myo 0.7744 0.7811 0.7891 0.7826
LV 0.8893 0.8883 0.8887 0.8916
Average 0.8192 0.8212 0.8242 0.8308

loss functions used for deep learning-based image segmentation such
as Cross-Entropy loss, the Dice loss, and the IoU loss (Jaccard loss)
have some shortcomings as they are not good enough in handling class-
imbalanced problems. Based on Baroni-Urbani-Buser coefficient, we
introduce a novel loss function, namely Tversky-Kahneman Baroni—
Urbani-Buser loss for the image segmentation task. The proposed loss
has advantages over the above mentioned losses and the recently
proposed Tversky loss. To the best of our knowledge, the Baroni-
Urbani-Buser coefficient and Tversky—-Kahneman Baroni-Urbani-Buser
loss has not been investigated in segmentation studies before. The
detailed explanation on advantage of the proposed loss function is
described as the following.

Why we use the Baroni-Urbani-Buser coefficient
(—INVIPXTN___y for the loss but not Jaccard (—————), Dice
TN+VTPXTN+FP+FN TP+FP+FN
2XTP TP+TN 5 . e §
(—2><T P FPITN ) or Accuracy (—T STTNIFPIFN )? Obviously, difficult seg

mentation cases lying on images which have a very small injury
area/white-masked area compared to the safe area/black-masked area
(classes imbalance). We have not chosen the Dice and Jaccard co-
efficients because if we remove the TN quantity (which contributes
to a large value), we will ignore a crucial part for updating the loss
value and validating our model. On the Accuracy-basedloss, because
TN value is larger than the TP, FP and FN for several times, hence
after backpropagation stage, the training step size might be not as good
as the Baroni-Urbani-Buser-based loss providing, as regards the model
convergence speed. Thus we tune the quantities for more importance
on TP and less importance on TN quantity; or Baroni-Urbani-Buser
coefficient and Jaccard coefficient could be better choices to evaluate
the model. Results provided by Table 5 have realized the differences.
The formula of Tversky coefficient for Tversky loss function is

axXFP+pxFN . .
TPraxEPIxEN where a and # control the magnitude of penalties for

FPs and FNs, respectively. However, printing out the pixel number
classified with false-positive and false-negative allows us recognize
that using any loss function, these values are both small, after several
epochs, compared to true-positive and their difference is not large.
Hence we decide to tune the quantity of TP and TN. As could be
observed from Table 5, results provided by Tversky loss and Focal
Tversky loss are not favorable enough. We have not also applied the
Cross-Entropy loss, the Dice loss and the Jaccard loss because they are
witnessed to be not satisfactory enough in handling class-imbalanced
problems [72]. Results provided by Table 5 have pointed out.

Though our proposed method works efficiently on these four
datasets with class-imbalanced problem; it might not work well on
datasets which have got severe class-imbalanced problem. If injury
area/white-masked area is critically small, our loss might converge too
fast, which leads to vanish gradient and further training failure.

12

6. Conclusion

We have presented a new network architecture and a novel loss
for biomedical image segmentation in this paper. The network has
been proposed with pretrained encoder-decoder framework with re-
finement module following called Modified EffcientNet-encoder U-Net
Joint Residual Refinement Module. For the loss function, encouraged
by the similarity matching Baroni-Urbani-Buser coefficient, we further
build up several versions of the Baroni—Urbani-Buser loss function for
biomedical image segmentation, with the second version of Tversky—
Kahneman Baroni-Urbani-Buser loss function (Ly g _ g g—.0) is the most
applicable. Extensive experiments have been performed to prove the
dominance of both proposed architecture and proposed loss function. In
the future, we will put more consideration on increasing the complexity
of the network and proposing new loss functions to apply on training
more sophisticated datasets, thus escalating the overall accuracy of the
deep-learning segmentation field.
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